Connect with us

Science

BrainGPT: Mind-Reading Technology Turns Thoughts Into Text

Published

on

BrainGPT

Mind-reading has long been the stuff of science fiction stories. When it comes to technology, however, the line between fiction and reality is becoming blurred.

Scientists at the University of Technology Sydney have begun exploring that line. 

Recently, they’ve taken some big leaps forward with mind-reading technology… And it’s mind-blowing!

They hope to create a future where they will be able to give a voice to those who have lost theirs to medical and neurological issues. 

The new Artificial Intelligence, called DeWave or BrainGPT, has successfully predicted thoughts with a 40% accuracy.

The goal is to reach 90%.

Does Mind-Reading Technology Exist?

Despite all the recent innovations in artificial intelligence, there is no technology, so far, that can open up the mind and read its contents like a diary. There is, however, technology that can study the human brain and glean all sorts of information. This is what is meant by the term “mind-reading technology”.

Advancements in technology can tell researchers how illness or injury impacts the brain. Scientists can learn how the brain responds to certain sights or sounds. Using this information, they can use Artificial Intelligence to help them decode patterns and “read minds.”

And now with BrainGPT, these patterns can be turned into text.

Mind-Reading Technology Can Create a New Era of Communication

For the first time in history, spinal injuries are becoming something that doctors can reverse. Although it is a long healing process, scientists have made amazing progress in treating paralysis using Artificial Intelligence (AI).

Those with paralysis or stroke often communicate through eye movements or twitches. Imagine a world where mind-reading technology can allow us to begin understanding and even communicating with people in this condition.

Mind-reading technology could also be used to understand Organoid Intelligence (OI). This is an emerging field of study where scientists are creating a bio-computer using human brain cells. By gaining a better understanding of how the human brain functions and responds, scientists can begin to answer important questions as OI progresses.

  • Can brain organoids feel sensations?
  • Do they show signs of communication?
  • How do they respond to certain stimuli?
  • At what point, if any, do they begin functioning like a real brain?

What Is Mind-Reading Technology?

Any technology that investigates what’s happening in the human brain could be called mind-reading technology. 

Take Algorithms, for example. Algorithms are used in browsers to enhance the user’s experience. They determine what a user needs or would like to see based on previous activities and interests. Another would be an email program that can finish a phrase or sentence before the user does. 

These kinds of algorithms are based on observations of past behavior patterns. They are data. This data can be used to calculate the likelihood of what action or choice will follow. 

DeWave is an AI that is utilized by BrainGPT. BrainGPT is a language model that also uses vast amounts of neuroscience data to help researchers. This technology is reaching a point where it’s using data to read minds in a very real way. 

How Does Mind-Reading Technology Work?

For mind-reading technology to work, it’s first important to understand how the human brain processes language.

Words don’t exist in the human brain the way they exist in writing or speech. The brain manifests words in the form of brain waves, or electrical impulses, that ignite when a word is spoken or read. These impulses are unique and occur in a wide variety of places in the brain. 

In tests for the DeWave software, subjects wore a snug-fitting cap. The device took a reading of their brain waves as they read silently from assigned material. The DeWave technology then studied these brainwaves. Through this process, DeWave learned to associate each wave with a specific word. The result is a kind of dictionary of brainwaves that allows DeWave to interpret what a subject is thinking.

At 40% accuracy, it’s not perfect. However, the goal of 90% sounds pretty incredible. Scientists are learning more about why inaccuracies occur with DeWave, and how it can be advanced to make BrainGPT more accurate.

How does mind-reading technology work?

Why Isn’t BrainGPT Perfect?

Technologies like BrainGPT and DeWave have many Inaccuracies that are caused by several things. 

  • Reading vs. Thinking: Research teams collect data while subjects read printed words. As people read, spaces between words and certain punctuation marks signal them to take a pause. But when people think freely, such pauses don’t exist. This can make it challenging for BrainGPT to recognize words and sequences.
  • Clustering Words: The brain tends to cluster words with a similar meaning. This causes them to have very similar brainwave patterns. This forces the BrainGPT to make a choice. Sometimes it will replace a common word with something similar, but different. For example, “The author” might be interpreted as “The man”.
  • Brain Differences: Scientists are still studying how the brain processes language in many different situations. For example, people who speak English as a second language may have a very different set of neural responses than native speakers. Researchers of mind-reading technology have yet to understand the impact of various accents and other speech differences.

For now, scientists are excited that the technology has become accurate enough to interpret much of what a person is thinking. Word for word, literal thought interpretations are still a thing of the future.

However, as scientists work toward this goal, dire questions have arisen about the safety and ethics of this new technology.

How Should We Handle Mind-Reading Technology as It Evolves?

The thought of allowing technology to peer into our most private minds is frightening for a lot of people. It has both amazing potential and risk.

The technology could give a voice to people who can’t speak. There has also been speculation that such technology could be used to identify people with serious mental health problems. This could give the opportunity to provide help for those who need it at a time when it matters.

Mind-reading technology can also be used to develop a lie detector that is impossible to cheat, and even prevent crimes before they happen. 

However, this technology could have some serious downsides. It could be used to steal highly secure information. This could include passwords to computers containing financial or medical records. Results can also be misinterpreted which can lead to false judgments.

Two approaches have been suggested by researchers for dealing with the ethics of mind-reading Technology.

  • Embedded ethics: This approach would involve programming ethics into the software and hardware involved in these mind-reading devices. This ensures the technology is incapable of crossing boundaries laid out for it.
  • Adversarial ethics: This would involve the development of laws and regulations. These limits would be enforced by authorities governing the way this technology is used. 

Ethics and rights will need to be evaluated as neuroscience and Artificial Intelligence evolve. Organizations like The Neurorights Foundation are already planning for the future. They’ve identified five different areas of specific focus:

  • mental privacy, personal identity, free will, fair access to mental augmentation, and protection from bias.
How Should We Handle Mind-Reading Technology as It Evolves?

IC Inspiration

Our brains are incredibly complex and amazing libraries of information. We collect vast amounts of data throughout our lifetimes. Our brains have developed amazing ways to store and protect this information.

Language has long been associated with only two sections of our brain, both in the left hemisphere. Scientists in Berkeley, California have recently blown that theory clear out of the water (and into space).

They put people inside an MRI machine for an extended period. The people then listened to recordings of stories, while the researchers studied how their brains responded to each of the words. 

The result became an incredible word map of the human brain. The researchers found that each word caused a response in a different part of the brain. No part of the brain is excluded. Words are associated with every part of this incredible organ.

More than that, the brain actually organizes these words into categories. Words associated with math and measurement are all grouped in one area, while words related to food and drink may cluster in another.

This new and amazing understanding of the human brain combined with advances in BrainGPT could bring with it some awesome potential. It can help us to understand each other on a new and deeper level than ever before.

Joy L. Magnusson is an experienced freelance writer with a special passion for nature and the environment—topics she writes about widely in publications. Her work has been featured on Our Canada Magazine, Zooanthology, Written Tales Chapbook and more.

Science

10 Facts About Stars That Will Absolutely Blow Your Mind

Published

on

10 amazing facts about stars, Inspiringclick featured image. a collage of two people standing on a cliff underneath the stars.

10 Amazing Facts About Stars

I’ll argue that the biggest mystery is not what was, or what will be—it’s what is.

For thousands of years people have looked at the sky and asked that very question—it’s even in one of the world’s most famous lullabies.

Because that’s what stars do: they fill us with awe and intrigue. They make us wonder about the nature of the universe and ourselves, and although we might not have all our questions answered, we still feel hope and inspiration when we look up… Almost as though being here is enough.

Well, we don’t have all the answers for you, but we’ve got some, and their sure to leave you with the same curiosity that science never fails to deliver. At the very least, these 10 amazing facts about stars will make you the most interesting person in the room.

Oh, and they might also blow your mind.

1. Almost All Matter in The Universe Comes From Stars

The oxygen you breathe in, the calcium that strengthens your bones, and even the nitrogen that forms your DNA—they were all formed in stars long before galaxies even existed.

Stars spend their entire life building elements within themselves, then when they reach the end of their life, they explode and scatter the elements throughout space.

These elements are responsible for creating matter (anything that’s physical).

a blue background with white squares with symbols of elements

The only known elements that were not formed in stars are Hydrogen, Helium, and Lithium. These three elements were formed minutes after the big bang, long before stars.

2. Planets Are Born from Stars—and Depend on Them. The Ones That Don’t, Go Rogue

Planets are created from the leftover gas and dust in a spinning cloud that surrounds young stars.

Incredibly, there are around 100 billion stars in the galaxy, and it’s likely that for every star there are one or more planets. This means that there are more planets than stars, which makes sense because planets sometimes orbit stars—just like the Earth orbits the Sun.

Sun and the moon in space. Text box appears from the sun and reads "can someone please remind them that I'm a star too.

Do Planets Orbit Stars?

It’s a common misconception that planets orbit stars, but they don’t. Planets orbit around the point where the mass between them and another object is balanced enough to allow for an orbit. Sometimes, that object just happens to be a star, but it also be other celestial bodies. This point of mass is called the a barrycenter.

Rouge Planets

Planets Can Be Players Too

Planets that aren’t bound to a star will not be in an orbit; therefor, they will float aimlessly around space. These planets are called rogue planets.

Some of these loner planets may have been part of a planetary system once, but for whatever reason, they were ejected from their orbit (or kicked out if you’re feeling comedic).

We’re not really certain why planets go rogue, but an idea is that other stars who are in close proximity can pull a planet off it’s orbit with it’s strong gravitational pull (or prowess, if you want to keep the comedy going).

What’s The Deal with Rouge Planets?

Imagine being a planet who is part of a planetary system.

For millions of years, you’re dancing in an orbit around your star—the light of you’re life. Then one day, another star with bright red and orange colors comes by and pulls you away from your orbit, and just when you think you’re about to enter a dance with this new star, you end floating aimlessly into space.

The first star won’t have you back, and it would it seem that the newest star never wanted to tango in the first place.

Now, everybody calls you a loner and a nomad. But you know what? It doesn’t matter, because although you’re not in an orbit with any particular star, you still interact with other celestial bodies you pass by; in fact, sometimes the gravitational force from these bodies changes your direction and keep you moving into different places (or spaces)—your just not tied down to any particular one.

Yes, you are the rouge planet.

do planets orbit stars? picture of a planet with sunglasses on it. The rogue planet

3. You Can Never Actually See A Star; You Can Only See The Light They Give Off

One of the most interesting facts about stars is that we don’t actually see them.

It’s easy to think that you are seeing a star when you look up into the night sky, but don’t be fooled—what you are really looking at is the light that stars give off.

In reality, stars are too far away to see with your naked eye, and even if you were to look through a telescope, you are not actually seeing the sun, moon, or any other celestial object—all you are seeing is their light.

You can only see objects that light has reached the surface of. For example, If you can view Mars with a telescope, then it is only because the light reflected from Mars has reached the distance your telescope can show you. In reality, Mars is way too see with your naked eyes.

A light year is the distance light travels in one year. The stars you see when you look up at the night sky is about 1000 light years away; therefor, they take about 1000 years to reach the Earth, and when they do, they reach your eyes.

But space as a huge place, and some stars are much further than that.

4. The light From Some Stars Travel For Billions of Years and Still Haven’t Reached Us

Light has a speed of 186,000 miles per second.

To put that into perspective, light can travel from the Earth to the Moon in 1.28 seconds, and in that same amount of time, it could travel back and forth between New York and Los Angeles 36 times!

There are stars in deep space—not within our galaxy—that are so far away, that their light has not reached the Earth yet.

A group of people standing on a snowy hill with stars in the sky

If you’re ever feeling down just remember: a star couldn’t reach you by itself, so it sent off its light to travel for thousands of years—just to give you motivation and wonder when you need it most.

5. When You Look at a Star, You Are Looking at The Past

Let’s say that you go outside and begin to look at a star in the night sky.

Since you’ve read our 10 interesting facts about stars, you know that you are only seeing the light of that star, and not the star itself.

If you can only see the light that a star gives off, and it takes a thousand years for that light to reach the Earth, then you are actually seeing that star as it was 1000 years ago.

For you to see what that star looks like right now, you’d need to wait another thousand years—because the light it’s emitting right now would take another thousand years to reach you.

6. It’s Theoretically Possible That Some Stars You See Might Not Exist Anymore

Some stars in deep space are millions of light years away meaning that it will take millions of years for their light to reach the point where you can see them with a telescope.

Stars typically live for a few million years, and If some stars sent out their light a few million years ago, it’s theoretically possible that some of these stars have died and aren’t there anymore. Why?

Because the light has already left the star and is travelling into space, but the star is still in its orbit in a galaxy far far away (unless the poor sucker went rouge).

The light and the star are two independent things. So, you can be looking at a star, but for all you know, that star might have died.

But although it may be gone, you are still able to look at it’s light—it gives you inspiration and leaves you in wonder for as long as you live.

Star Size Lifespan
Massive StarsA few million years
Medium-sized StarsApprox. 10 billion years
Small Stars Tens to hundreds of billions of years
How long different stars live for

8. Stars Are One of The Few Things in Existence That Give Off Their Own Light

Planets, moons, asteroids, and even most living things don’t produce light on their own; they reflect light from celestial objects that give off light—like stars.

In other word’s, you can only see other objects largely because stars exist. Without light from stars, your eyes would never be able to capture these objects (or people or thing’s).

Here’s a bonus to go with our 10 facts about stars:

the only reason we can see anything on Earth is because light reflects off objects and into our eyes, and before we invented light bulbs, most of that light came from stars.

Other than infrared and thermal radiation—which can only be seen with some cameras—we as human beings don’t even produce our own light.

a galaxy in space with stars

9. Stars Are Constantly Battling Gravity, and Gravity Always Wins (Thankfully)

Stars are in a constant battle with gravity throughout their lives.

The core of a star burns hydrogen, and this fuel keeps the star stable by generating an outward pressure. At the same time, gravity is always trying to crush the star by pulling matter inward—creating inward pressure.

Eventually, the star runs out of energy and gives into the pressure where it is swallowed by gravity and implodes.

This explosion spreads elements throughout the galaxy, and elements were responsible for the creation of all matter.

A star literally had to die for you to be here right now.

10. The Final Fact About Stars: A Star Created the Largest Ocean In The Universe—and it’s Floating In Space

The largest body of water in the universe is 140 trillion times the size of all of Earth’s oceans combined, and it’s floating in space around a quasar.

What does this have to do with stars?

Sometimes when stars explode, they create a region in space where gravity is so strong that nothing—not even light—can escape it. This is called a black hole—a term you’re probably familiar with.

The largest body of water in the universe is surrounding a type of black hole called a quasar and it’s moving through space at this very moment.

If Light Cannot Escape a Black Hole, Then How Do We See it?

Nothing can escape a black hole, not even light.

This means that black holes neither produce their own light nor can they reflect it; however, we can see black holes from the lights that are close to it.

This is exactly what happened in 2019 when the first image of a black hole was captured in a galaxy 53.49 million light years away (Galaxy M87).

The worlds first image of a black hole
The World’s First Image of a Black Hole

You see how the red colour looks as though it’s moving? That’s because the gravitational force of the black hole is bending the light passing near it.

In this way, we are able to view black holes because of the lights around it.

IC Inspiration

There are so many cool things about stars, but the most amazing is that although they give off a finite amount of light, they still manage to give an infinite amount of knowledge and wisdom.

If I had to make the comparison, knowledge is like the light that stars shoot out, and wisdom is the star itself.

The pursuit of knowledge gives everything a visual—just like the pursuit of light allows us to see everything.

In knowledge there is always another thing to learn—just like there is always another object that light touches.

Every time you see something, you see another thing with it, did you notice?

Just like every time you learn something, there is something else to learn that is connected to it.

Knowledge searches for answers and it all it finds is questions, but wisdom is quite different.

Wisdom searches for questions and all it finds is answers.

In time, knowledge becomes wisdom like stars become life, and I would argue that if the universe is infinite, then what we can know is also infinite.

And if the universe is finite, then it’s possible for humanity to get to the point where we have all the answers.

But What Point Am I Trying to Make?

Whatever the universe is, that’s what we are. Stars tell a story that we come from the universe. It might even be possible that we come to know whether the universe is finite or not through knowing stars, and when we do, we’ll have another question to ask…

By minds much wiser with time that has passed.

Continue Reading

Science

Commercial Hypersonic Travel Can Have You Flying 13,000 Miles In 10 Minutes!

Published

on

jet plane flying overseas by way of commercial hypersonic air travel.
Commercial Hypersonic Travel Can Have You Flying 13,000 Miles In 10 Minutes!

If engineers start up a hypersonic engine at the University of Central Florida (UCF) and you’re not around to hear it, does it make a sound?

Hypersonic travel is anything that travels by at least 5x more than the speed of sound. A team of aerospace engineers at UCF have created the first stable hypersonic engine, and it can have you travelling across the world at 13,000 miles per hour!

Compared to the 575 mph a typical jet flies, commercial hypersonic travel is a first-class trade-off anybody would be willing to make.

In fact, a flight from Tampa, FL to California would take nearly 5 hours on a typical commercial jet; whereas, with a commercial hypersonic aircraft, it will only take 10 minutes.

So here’s the question: When can we expect commercial hypersonic air flights?

When we stop combusting engines and start detonating them! With a little background information, you’ll be shocked to know why.

Challenges and Limitations of Commercial Hypersonic Travel

The challenge with commercial hypersonic air travel is that maintaining combustion to keep the movement of an aircraft going in a stable way becomes difficult. The difficulty comes from both the combustion and aerodynamics that happens in such high speeds.

What Engineering Challenges Arise in Controlling and Stabilizing Hypersonic Aircraft at Such High Speeds?

Combustion is the process of burning fuel. It happens when fuel mixes with air, creating a reaction that releases energy in the form of heat. This mixture of air and fuel create combustion, and combustion is what generates the thrust needed for the movement of most vehicles.

But hypersonic vehicles are quite different. A combustion engine is not very efficient for vehicles to achieve stable hypersonic speeds. For a hypersonic aircraft to fly commercially, a detonation engine is needed.

Detonation can thrust vehicles into much higher speeds than combustion, so creating a detonation engine is important for commercial hypersonic air travel. Detonation engines were thought of as impossible for a very long time, not because you couldn’t create them, but because stabilizing them is difficult.

On one hand, detonation can greatly speed up a vehicle or aircraft, but on the other hand, both the power and the speed it creates makes stabilizing the engine even harder.

a lit candle with a cloud of smoke and a lit candle showing comparison between conventional combustion with that of hypersonic travel.
Combustion vs Detonation

How Do Aerodynamic Forces Impact the Design and Operation of Hypersonic Vehicles?

Aerodynamics relates to the motion of air around an object—in this case, an aircraft. As you can imagine, friction between an aircraft and the air it travels through generates a tremendous amount of heat. The faster the vehicle, the more heat created.

Commercial hypersonic vehicles must be able to manage the heat created at hypersonic speeds to keep from being damaged altogether.

Hypersonic aircraft do exist, but only in experimental forms such as in military application. NASA’s Hyper-X program develops some of these vehicles, one of which is the X-43A which could handle hypersonic speeds of Mach 6.8 (6.8x faster than the speed of sound).

Mach Number RangeName
1.0 MachSonicExactly the seed of sound.
1.2-5 MachSupersonicFaster than the speed of sound, characterized by shock waves.
>5.0HypersonicMore than 5x speed of sound, with extreme aerodynamic heating.
Description of Mach levels

But vehicles for commercial hypersonic air travel is still a work in progress

Engineers say that we will have these vehicles by 2050, but it may even be sooner that that. Here’s why.

Future Prospects and Developments in Hypersonic Travel

The worlds first stable hypersonic engine was created back in 2020 by a team of aerospace engineers at UCF, and they have continued to refine the technology since. This work is revolutionizing hypersonic technology in a way that had been thought of as impossible just a few years ago.

To create a stable engine for commercial hypersonic air travel, an engine must first be created that can handle detonation, but not only that, this engine must actually create more detonations while controlling.

This is because in order to achieve hypersonic speeds and then keep it at that level, there needs to be repeated detonations thrusting the vehicle forward.

The development at UCF did just that. They created a Rotating Detonation Engine (RDE) called the HyperReact.

What Technological Advancements are Driving the Development of Commercial Hypersonic Travel?

When combustion happens, a large amount of energy creates a high-pressure wave known as a shockwave. This compression creates higher pressure and temperatures which inject fuel into the air stream. This mixture of air and fuel create combustion, and combustion is what generates the thrust needed for a vehicles movement.

Rotating Detonation Engines (RDEs) are quite different. The shockwave generated from the detonation are carried to the “test” section of the HyperReact where the wave repeatedly triggers detonations faster than the speed of sound (picture Wile E. Coyote lighting up his rocket to catch up to Road Runner).

Theoretically, this engine can allow for hypersonic air travel at speeds of up to 17 Mach (17x the speed of sound).

hypersonic travel engine schematics by UCF
Schematic diagram of the experimental HyperReact prototype- University of Central Florida

Hypersonic technology with the development of the Rotating Detonating Engine will pave the way for commercial hypersonic air travel. But even before that happens, RED engines will be used for space launches and eventually space exploration.

NASA has already begun testing 3D-printed Rotating Detonating Rocket Engines (RDRE) in 2024.

How Soon Can We Expect Commercial Hypersonic Travel to Become a Reality?

Since we now have the worlds first stable hypersonic engine, the worlds first commercial hypersonic flight won’t be far off. Professor Kareem Ahmed, UCF professor and team lead of the experimental HyperReact prototype, say’s its very likely we will have commercial hypersonic travel by 2050.

Its important to note that hypersonic air flight has happened before, but only in experimental form. NASA’s X-43A aircraft flew for nearly 8,000 miles at Mach 10 levels. The difference is that the X-43A flew on scramjets and not Rotating Detonation Engines (RDEs).

Scramjets are combustion engines also capable of hypersonic speeds but, which are less efficient than Rotating Detonation Engines (RDEs) because they rely on combustion, not continuous detonation.

This makes RDE’s the better choice for commercial hypersonic travel, and it explains why NASA has been testing them for space launches.

One thing is certain:

We can shoot for the stars but that shot needs to be made here on Earth… If we can land on the moon, we’ll probably have commercial hypersonic travel soon.

Clouds spelling out UCF and jet plane flying by way of commercial hypersonic air travel

IC INSPIRATION

The first successful aviation flight took place 26 years after the first patented aviation engine was created; and the first successful spaceflight happened 35 years after the first successful rocket launch.

If the world’s first stable hypersonic engine was created in 2020, how long after until we have the world’s first Mach 5+ commercial flight?

1876-1903Nicolaus Otto developed the four-stroke combustible engine in 1876 that became the basis for the Wright brothers performing the first flight ever in 1903.
1926-1961Robert H. Goddard’s first successful rocket launch in 1926 paved way for the first human spaceflight by Yuri Gagarin in 1961
2020-2050The first stable RDE was created in 2020 and history is in the making!

Shout out to Professor Kareem Ahmed and his team at UCF. They’ve set the precedent for history in the making.

Imagine travelling overseas without the long flight and difficult hauls, or RDREs so great, they reduce costs and increase the efficiency of space travel. When time seems to be moving fast; hypersonic speeds is something I think everyone can get behind.

Would you like to know about some more amazing discoveries? Check out the largest ocean in the universe!

Continue Reading

Motivational

3D Printed Organs Save Woman’s Life and Accidentally Pave Way for Biology-Powered Artificial Intelligence

Published

on

Women showing a heart symbol with her hands in front of 3d printed organs

A Great Advancement for 3D Printed Organs

3D printing in hospitals is nothing new, but for the first time in history, a woman received a 3D printed windpipe that became a fully functional without the need for immunosuppressants.

Immunosuppressants are used during organ transplants to keep the body from attacking the organ that it see’s as foreign. This means that the organ the woman received was organic and personalized for her, as if she had it her entire life.

This mind-blowing news shows that we are now closer than ever to being able to create full-scale, functional, and complicated 3D printed organs like a heart or lung.

But what about creating a brain?

3D Printing and Organoid Intelligence

Organoid Intelligence, or OI, is an emerging field of study that is focused on creating bio-computers by merging AI with real brain cells called organoids. Organoids are miniature and simplified versions of organs grown in a lab dish. They mimic some of the functions of fully grown organs, like brains. The idea behind OI is that by increase the cells organoids contain, they may begin to function like fully grown brains, and can then be used alongside computers to enhance Artificial Intelligence.

It turns out that the world’s first 3D printed windpipe was so successful that we are now closer than ever to creating the world first organoid intelligent bio-computer.

Here’s why.

The World’s First 3D Printed Windpipe

Transplant patients usually have to take a long course of immunosuppressants that help the body accept the organ. The body see’s the organ as foreign, and so the immune system begins to attack the new organ, which can lead to more complicated health problems.

The woman in her 50’s who received the 3D printed windpipe did so without any immunosuppressants. In just 6 months after the operation, the windpipe healed and began to form blood vessels, and of course, more cells.

The current goal of scientists in the field of Organoid Intelligence is to increase organoids from 100,000 cells to 10 million, and this begs the question:

Can 3D printing help build bio-computers by creating better organoids?

Can 3D Printing Help Build Bio-Computers?

The worlds first 3D printed windpipe shows that advances in 3D printing can create better functioning organs, and this implies that we can also create more intricate organoids to help in the field of Organoid Intelligence and eventually create bio-computers.

Its important to understand the distinction between 3D printing an organ and printing something like a tool or musical instrument.

The difference between printing an organ and printing a non-biological structure depends on the ink being used in the 3D printer.

3D printing non-organic structures will require ink that can be made from plastic, plastic alternatives like PLA, metal, and ceramics. On the other hand, 3D printed organs are made from ink called “bio-inks” that are a mixture of living cells and biocompatible substances like the ones mentioned above.

In the case of the 3D printed windpipe, the ink used was partly formed from the stem and cartilage cells collected from the woman’s own nose and ear. It was because of this bio-ink that the woman’s body did not reject the organ.

The Problem With 3D Printed Organs

Organs created with bioprinting need to function like real organs for the body to safely use them, and this does not happen right away.

The 3D printed organs need to go beyond just a printed structure and become living. They need to form tissues and cells that help create biological functionality, and forming these cells take time.

The problem with 3D bioprinting is that the ink used for the printer needs to be effective at doing this, and if it is not, the organ may not stay functional.

The ink used for the 3D-printed windpipe was made from part bio-ink and part polycaprolactone (PCL), a synthetic polyester material.

PCL is a used in the 3D ink for the purposes of maintain the structure of the windpipe, while the bio-ink is used to help the 3D printed organ to become fully biological in time so that the body can use it.

The PCL maintains the structure while the bio-ink does it’s thing.

The problem with PCL is that it is biodegradable and won’t last forever. In fact, doctors don’t expect the 3D-printed windpipe to last more than five years.

The Solution is Better Bio-ink

The 3D printed windpipe was not just made using PCL, but it contained bio-ink made from living cells too. The hope is that the living cells in the 3D printed organ—which came from the bio-ink—will assist the patient’s body in creating a fully functional windpipe to replace the PCL’s function.

If the organ begins to form cells and tissue by itself, then the function of PCL will be replaced by the biological function of the organ that is growing.

The organ becomes real!

Bio-Ink helps the 3D printed organ mimic it’s natural environment of cells and eventually become a real organ.

3D Printing Organs Will Save Lives

Every year, thousands of people need a lifesaving organ transplant. These transplants cost hundreds of thousand of dollars, and many people who need them don’t make it passed the waiting list.

3D Printing organs could give people the incredible opportunity to receive the help they need when they need it, saving thousands of lives annually, and millions of lives in the long run.

As advances are made in 3D Bioprinting, they will also be made in areas of Organoid and Artificial Intelligence, which shows that the progress being made in one place will once again shine its way to another.

3d printed organ. A brain being created by 3d printers.

IC Inspiration:

If we can create better forms of bio-ink and produce fully functional organs using 3D printing, we will fundamentally change the entire health care system.

17 people die every single day waiting for an organ transplant, many of whom can’t afford the transplant in the first place.

The biggest hope in the world for everyone that is affected by this is that organs can be produced when they are needed, ending the transplant shortage and saving the incredible lives of millions of people in the future.

We have seen from this story that personalized organs made from a patients own cells can stop the bodies rejection of organs. This shows us that there will come a time when there will be no need for immunosuppressants therapy.

Even more amazing is that doctors use 3D printing to practice performing a surgery so that they can sharpen their skills before the surgery. This also helps them find better pathways for performing the surgery.

Think about it… If you can’t use a real organ to practice on, then 3D organs are the next best thing.

The production of organs, the irrelevancy of immunosuppressants, and more efficient surgery will eventually drive down the prices of transplants, and 3D printing organs in the future will not only save lives, but it will also increase the quality of those lives afterwards.

That is the sort of world we can create. It’s amazing to think of all the good that is being done right here, right now.

Continue Reading

Trending