Motivational

3D Printed Organs Save Woman’s Life and Accidentally Pave Way for Biology-Powered Artificial Intelligence

Published

on

A Great Advancement for 3D Printed Organs

3D printing in hospitals is nothing new, but for the first time in history, a woman received a 3D printed windpipe that became a fully functional without the need for immunosuppressants.

Immunosuppressants are used during organ transplants to keep the body from attacking the organ that it see’s as foreign. This means that the organ the woman received was organic and personalized for her, as if she had it her entire life.

This mind-blowing news shows that we are now closer than ever to being able to create full-scale, functional, and complicated 3D printed organs like a heart or lung.

But what about creating a brain?

3D Printing and Organoid Intelligence

Organoid Intelligence, or OI, is an emerging field of study that is focused on creating bio-computers by merging AI with real brain cells called organoids. Organoids are miniature and simplified versions of organs grown in a lab dish. They mimic some of the functions of fully grown organs, like brains. The idea behind OI is that by increase the cells organoids contain, they may begin to function like fully grown brains, and can then be used alongside computers to enhance Artificial Intelligence.

It turns out that the world’s first 3D printed windpipe was so successful that we are now closer than ever to creating the world first organoid intelligent bio-computer.

Here’s why.

The World’s First 3D Printed Windpipe

Transplant patients usually have to take a long course of immunosuppressants that help the body accept the organ. The body see’s the organ as foreign, and so the immune system begins to attack the new organ, which can lead to more complicated health problems.

The woman in her 50’s who received the 3D printed windpipe did so without any immunosuppressants. In just 6 months after the operation, the windpipe healed and began to form blood vessels, and of course, more cells.

The current goal of scientists in the field of Organoid Intelligence is to increase organoids from 100,000 cells to 10 million, and this begs the question:

Can 3D printing help build bio-computers by creating better organoids?

Can 3D Printing Help Build Bio-Computers?

The worlds first 3D printed windpipe shows that advances in 3D printing can create better functioning organs, and this implies that we can also create more intricate organoids to help in the field of Organoid Intelligence and eventually create bio-computers.

Its important to understand the distinction between 3D printing an organ and printing something like a tool or musical instrument.

The difference between printing an organ and printing a non-biological structure depends on the ink being used in the 3D printer.

3D printing non-organic structures will require ink that can be made from plastic, plastic alternatives like PLA, metal, and ceramics. On the other hand, 3D printed organs are made from ink called “bio-inks” that are a mixture of living cells and biocompatible substances like the ones mentioned above.

In the case of the 3D printed windpipe, the ink used was partly formed from the stem and cartilage cells collected from the woman’s own nose and ear. It was because of this bio-ink that the woman’s body did not reject the organ.

The Problem With 3D Printed Organs

Organs created with bioprinting need to function like real organs for the body to safely use them, and this does not happen right away.

The 3D printed organs need to go beyond just a printed structure and become living. They need to form tissues and cells that help create biological functionality, and forming these cells take time.

The problem with 3D bioprinting is that the ink used for the printer needs to be effective at doing this, and if it is not, the organ may not stay functional.

The ink used for the 3D-printed windpipe was made from part bio-ink and part polycaprolactone (PCL), a synthetic polyester material.

PCL is a used in the 3D ink for the purposes of maintain the structure of the windpipe, while the bio-ink is used to help the 3D printed organ to become fully biological in time so that the body can use it.

The PCL maintains the structure while the bio-ink does it’s thing.

The problem with PCL is that it is biodegradable and won’t last forever. In fact, doctors don’t expect the 3D-printed windpipe to last more than five years.

The Solution is Better Bio-ink

The 3D printed windpipe was not just made using PCL, but it contained bio-ink made from living cells too. The hope is that the living cells in the 3D printed organ—which came from the bio-ink—will assist the patient’s body in creating a fully functional windpipe to replace the PCL’s function.

If the organ begins to form cells and tissue by itself, then the function of PCL will be replaced by the biological function of the organ that is growing.

The organ becomes real!

Bio-Ink helps the 3D printed organ mimic it’s natural environment of cells and eventually become a real organ.

3D Printing Organs Will Save Lives

Every year, thousands of people need a lifesaving organ transplant. These transplants cost hundreds of thousand of dollars, and many people who need them don’t make it passed the waiting list.

3D Printing organs could give people the incredible opportunity to receive the help they need when they need it, saving thousands of lives annually, and millions of lives in the long run.

As advances are made in 3D Bioprinting, they will also be made in areas of Organoid and Artificial Intelligence, which shows that the progress being made in one place will once again shine its way to another.

IC Inspiration:

If we can create better forms of bio-ink and produce fully functional organs using 3D printing, we will fundamentally change the entire health care system.

17 people die every single day waiting for an organ transplant, many of whom can’t afford the transplant in the first place.

The biggest hope in the world for everyone that is affected by this is that organs can be produced when they are needed, ending the transplant shortage and saving the incredible lives of millions of people in the future.

We have seen from this story that personalized organs made from a patients own cells can stop the bodies rejection of organs. This shows us that there will come a time when there will be no need for immunosuppressants therapy.

Even more amazing is that doctors use 3D printing to practice performing a surgery so that they can sharpen their skills before the surgery. This also helps them find better pathways for performing the surgery.

Think about it… If you can’t use a real organ to practice on, then 3D organs are the next best thing.

The production of organs, the irrelevancy of immunosuppressants, and more efficient surgery will eventually drive down the prices of transplants, and 3D printing organs in the future will not only save lives, but it will also increase the quality of those lives afterwards.

That is the sort of world we can create. It’s amazing to think of all the good that is being done right here, right now.

Trending

Exit mobile version